WirelessBrewTools

Main Navigation

  • Home
  • Calculators & Tools
  • Technical Articles
  • Cheatsheets

Tool Categories

  • 5G NR
    • 5G NR ARFCN Calculator
    • 5G NR GSCN Calculator
    • 5G NR Peak Throughput Calculator
    • 5G NR PRACH Configuration Calculator
    • 5G NR RRC Timers
    • 5G NR RSRP Measurements
    • 5QI/QoS Reference
    • Beam Failure Recovery Sandbox
    • BWP Calculator
    • Cell Selection Criterion
    • Frequency Bands
    • MAC CE Parser
    • MCS Table Reference
    • Measurement Events Simulator
    • Measurement Gaps
    • Paging & Wake-Up Calculator
    • Resource Grid Explorer
    • RSRP Mapper
    • SCS & Numerology
    • SLIV/RIV/FDRA Calculator
    • SSB Configuration
    • TBS Calculator
    • Timing Advance Calculator
  • 4G LTE
    • 4G LTE EARFCN Calculator
    • LTE CQI Calculator
    • LTE PRACH Configuration Calculator
    • LTE RRC Timers
    • LTE Throughput Calculator
    • TDD Configuration
  • RF Tools
    • Antenna Downtilt Calculator
    • Antenna Gain Calculator
    • Cable Loss Calculator
    • Cell Range Calculator
    • EIRP Calculator
    • Fresnel Zone Calculator
    • Idle Mode Reselection
    • Link Budget Calculator
    • Path Loss Calculator
    • PCI Calculator
    • PIM Calculator
    • RSRP/RSRQ/SINR Calculator
  • Common RF
    • dB Calculator
    • dBm to Watt Converter
    • Free Space Path Loss Calculator
    • Thermal Noise Calculator
    • VSWR Calculator
  • Reference Tools
    • 3GPP Specs Reference
    • 3GPP Timeline
    • IMSI/IMEI Analyzer
    • Technology Comparison
    • UE Category Reference
  • Beta Releases
    • 3GPP NTN Satellite Planner
    • CORESET/PDCCH Calculator
Contact UsSettings
WirelessBrew
HomeCalculatorsCheatsheetsTechnical Articles
Tool Categories
5G NR
5G NR ARFCN Calculator5G NR GSCN Calculator5G NR Peak Throughput Calculator5G NR PRACH Configuration Calculator5G NR RRC Timers5G NR RSRP Measurements5QI/QoS ReferenceBeam Failure Recovery SandboxBWP CalculatorCell Selection CriterionFrequency BandsMAC CE ParserMCS Table ReferenceMeasurement Events SimulatorMeasurement GapsPaging & Wake-Up CalculatorResource Grid ExplorerRSRP MapperSCS & NumerologySLIV/RIV/FDRA CalculatorSSB ConfigurationTBS CalculatorTiming Advance Calculator
4G LTE
4G LTE EARFCN CalculatorLTE CQI CalculatorLTE PRACH Configuration CalculatorLTE RRC TimersLTE Throughput CalculatorTDD Configuration
RF Tools
Antenna Downtilt CalculatorAntenna Gain CalculatorCable Loss CalculatorCell Range CalculatorEIRP CalculatorFresnel Zone CalculatorIdle Mode ReselectionLink Budget CalculatorPath Loss CalculatorPCI CalculatorPIM CalculatorRSRP/RSRQ/SINR Calculator
Common RF
dB CalculatordBm to Watt ConverterFree Space Path Loss CalculatorThermal Noise CalculatorVSWR Calculator
Reference Tools
3GPP Specs Reference3GPP TimelineIMSI/IMEI AnalyzerTechnology ComparisonUE Category Reference
Beta Releases
3GPP NTN Satellite PlannerCORESET/PDCCH Calculator
Preferences
Back to 5g nr
5G NRPhysical LayerTutorial

Understanding 5G NR Numerologies

WirelessBrew Team
March 15, 2024
2 min read
  • Understanding 5G NR Numerologies
  • What is Numerology?
  • Why Scalable SCS?
  • Conclusion

Understanding 5G NR Numerologies

The 5G New Radio (NR) physical layer is designed to be highly flexible to support diverse use cases. One of the key enablers of this flexibility is the concept of scalable numerology.

What is Numerology?

In OFDM systems, numerology refers to the configuration of waveform parameters, specifically the Subcarrier Spacing (SCS) and the Cyclic Prefix (CP).

Unlike LTE, which supported a fixed SCS of 15 kHz, 5G NR supports multiple SCS values derived from the formula:

Delta f = 2^mu * 15 kHz

Where mu is the numerology index (0, 1, 2, 3, 4).

muSCS (kHz)Slot Duration (ms)Typical Use Case
0151FR1 (Sub-6 GHz) Coverage
1300.5FR1 Capacity / C-Band
2600.25FR1 / FR2
31200.125FR2 (mmWave)
42400.0625FR2 (SSB only)

Why Scalable SCS?

  1. Latency: Higher SCS means shorter symbol duration, leading to shorter slots and lower latency.
  2. Phase Noise: Higher SCS is robust against phase noise, which is critical at higher frequencies (mmWave).
  3. Doppler Shift: Wide SCS handles high Doppler shifts better (High-Speed Trains).

[!NOTE] Most commercial 5G networks in the C-Band (3.5 GHz) use 30 kHz SCS (mu=1).

Conclusion

Understanding numerology is the first step in mastering the 5G physical layer. It dictates the frame structure, resource grid, and ultimately the throughput capabilities of the cell.


WirelessBrew Team
Written by

WirelessBrew Team

Technical expert at WirelessBrew, specializing in 5G NR, LTE, and wireless system optimization. Committed to providing accurate, 3GPP-compliant engineering tools.

Up Next

More 5g nr Articles →